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NECESSARY CONDITIONS FOR SIMILAR SOLUTIONS
OF PROBLEMS OF TURBULENT-GAS DYNAMICS

ABSTRACT

The quasi-one-dimensional conservation equations with friction, heat, and mass
sources are considered. Necessary conditions for similar solutions of these equations
are mathematically derived, and these conditions are verified by sample computer

calculations.

- INTRODUCTION

PUFL is a quasi-one-dimensional, "almost-Lagrangian'" computer code for
solving the partial differential equations of mass, momentum, and energy conservation
for gas flows in pipes.1 The differential equations are cast in the Lagrangian form,
but mass sources are allowed. Also, frictional forces and energy sources or sinks

are considered.

In addition to providing a better understanding of the equations, there are two
major reasons for seeking similar solutions of the PUFL equations. First, the number
of calculations that need to be considered could be reduced; and, secondly, knbwledge
of the mathematical conditions for similarity could provide a basis for designing scaled

experiments.

In Section I of this report, the general conservation equations for pipe flows with
ablation are given and briefly discussed. The conditions necessary for similar
solutions are then derived. The auxiliary equations used by the PUFL calculation to
simulate ablation are presented in Section II. The necessary conditions that the
similarity conditions from Section I impose on the auxiliary equations and on the physical
parameters are discussed. Section III presents some sample PUFL calculations which

- indicate that by using the derived conditions, similar solutions are obtained.



: SECTION I:
DERIVATION OF SIMILAR CONDITIONS FOR THE PUFL EQUATIONS

The conservation equations that are the basis of the PUFL model are presented

below. The detailed derivation of these equations may be found in Ref. 1.

Continuity

The continuity equation is

Dm . D - s
Bt - bt PV) = Sm,

where m is the mass flux (mass/area-time) entering a volume homogeneously along
the side walls of the pipe that has a surface area S. The entering mass is assumed to

mix instantaneously with the material already present.

For extensive (mass-dependent) variables such as the volume, the substantial
derivative, D/Dt, is simply d/dt. Hence, after rearranging, the above equation

becomes

Momentum

The equation for the conservation of momentum is

D .
Dt (mw = ZF,

where ZF is the vector sum of the forces acting on an element. Since the mass of a

particle with mass sources varys with respect to time, the mass is inside the derivative

operator.

The one-dimensional momentum equation used by PUFL is

Du _ 1 . )
Dt m [mS(uW‘u)'Vsﬁ‘TwS]-
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The first term represents the adjustment of momentum in the gas due to the mass flux
(rh). The velocity of entering material is u in an x direction (u may be pos1t1ve or
negative). The accelerating force due to pressure differentials is denoted by -V—R
The term T S is the retarding frictional force exerted on the gas flow by a pipe wall
having a surface area S. Viscous forces within the gas are assumed to be zero. Also,

body forces are assumed to be negligible.

Energy

The conservation of total energy — kinetic plus internal - is considered by PUFL.
By using the momentum equation for velocities, the total energy equation reduces to an

equation for specific internal energy:

2

(u-u,)
De _ 1 )- w _ _av w0
Dt_m{ms[ 5 +(eW e)] Pt +'rWS|u|+H}

The first term represents the modification of specific internal energy within a gas by

the total energy of the entering mass. The expression p%g is the usual work term,

and Ty S ' I expresses the conversion of the translational kinetic energy of a gas into in-
ternal energy of heat due to the shear stress ('r ) at the wall. The rate of energy
change within a gas due to sources or sinks is denoted by H. This term may be related

to the mass entering the gas by using an additional ablation equation.

Derivation of the Similar Counditions

In order to obtain relationships necessary for similar solutions, the conservation
equations just described are now examined. The approach used in the following
discussion is equivalent to the familiar approach frequently used in dimensional analysis
to nondimensionalize flows by the use of characteristic or reference parameters. See

Appendix A for verification that this approach is equivalent.

A dimensional-analysis approach, using the Vaschy-Buckingham 7 ’cheorem,2 also
yields the same results as those derived here. Although the approach used here is
more laborious than the r method, it tends to impart a feeling of being more straight-

forward when applied to a number of relatively unfamiliar equations and parameters.

Consider two gas flows, both of which can be simulated by the PUFL equations.
Let one flow be described by a set of unprimed variables, the other by a set of primed
variables. The flows are examined at two instances when comparison of the two flows

is to start. At these instances, ratios are obtained for all of the pertinent variables




and parameters in the PUFL equations.

flow to the other, are denoted by subscripts and are defined as follows:

Axial distance: X0 = %
Density: Pg = f,—
. u
Velocity: U0 alery
Volume: V0 = VV'T
Mass: M0 = r?mnTl
Rate of energy H
deposition: HO = =
H
Flux of mass entering m
the flow: MO =—-:—'
m
Time intervals after the
instant at which ¢
comparison starts: to = i
Dimensionless
coefficient of heat CH
transfer: CHO = —
Cl
H
Ratio of specific heats: Yo = J,—
Y

tinuity, this means that

Dp_ _p dv, Sm

Dt "v'dat VvV

Radial dimensional:

Pressure:

Specific internal energy:

Surface area:

Wall stress:

Dimensionless coefficient
of friction:

Specific internal energy of
entering mass:

Specific energy of
vaporization:

Turbulent-transpiration
coefficient:

Velocity of entering
mass:

by
99 _ 9¢ ,8x'_ Ox' 98 _ 1 . 0%
ox ox! ox ox ox! X0 ox!
and by
D¢ _D¢ . Dt'_ Dt' D _ 1. D¢
Dt Dt Dt Dt Dt t, Dt'”

The above relationships are now used in the conservation equations.

These dimensionless ratios, which relate one

=X -
Ro = &
p0=ﬁﬁ' .
e =&
0 e
=S
So = 5
T
- W
T vy
wo TW
C :EL
fo C'
f
_ ®w .
ewO_-e_lv:
E ¢
E :._l
vO0 EI
v
= J
Nn =
0 n'
Uy
Uwo =o'
W

Derivatives for an arbitrary dependent variable (¢) in the two flows are related

For con-

t tn
P9 Do _PoP  yo ay', S¢S ™My
to Dt! VoV' T i, dt’ VoV ?
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and .
Dp' . _p'. 4V, Poto'o s'm'
Dt' v' dt' PoVo V'
SoMato
Hence, if ——p—v— = 1, the continuity equations for two physical systems are similar.
0'0

One interpretation of SOMOtO = pOVO is as follows. Suppose that two flows are
observed over time intervals t and t! respectively. If the ratio of the change in mass to
the original (or final) mass is the same for both flows, then SOMOtO = pOVO’ and the two

flows satisfy the same continuity equation during the respective time intervals.

If one is familiar with the technique just used on the continuity equation, the
conditions for similarity may be written directly by merely inspecting the equations.
Appendix B gives the algebraic details for the derivation of similar conditions for the
momentum and energy equations. The conditions required for similarity by the con-

servation equations are given in the following array:

Continuity
MpSoty _
1 —= =1
PoVo
Momentum
U
(2) _w0 _ 1
0
M, Snt
0'0 _
@ g, 7!
@ VoPolo _ .
UpLoMy
(5 Twoo'o _
UMy
Energy
o2
(6) 6-9_ =1
0
U.U
n L¥0-,
e
0
2
U
(8) eWO =1




e
9 20
0
M St
0 oto .
(10) 0.
M,
paV
(1) et .
oMo
T w050Yt0 _
(12—l
00
t H
oo
(13) =1
Moeo

If the auxiliary equation M0 = pOVO is used, conditions (1), (3), and (10) are
jdentical. With conditions (2) and (8), conditions (7) and (8) are superfluous, Also,
using condition (6), conditions (5) and (12) are identical. If conditions (11) and (6) are
used in condition (4), the latter reduces to tO = XO/UO' The conditions required for
similar solutions of the conservation equations are thus renumbered and summarized in

Table I.

®
Table I. Conditions required for similar solutions of the conservation equations.*
Similarity condition Conditions imposed on two flows
MOSOTO
(1) M. - 1 The ratio of "change in mass/mass" must be identical in the
0 two flows during the observation intervals.
(2) Uy, =1,
The variables describing the incoming material must use the
(3) e - e same scale factors as the main-flow variables.
w0 0
(4) ¢ = zi_(_) The time must scale as the ratio of ""distance/velocity"
0 UO scaling factors. This condition may be thought of as linking
the geometric and dynamic scaling.
2
(5) = 1 The kinetic and internal energies must scale the same. (For
0 two ideal gases, the Mach numbers must be identical.)
TWOS to .
(6) M. For pipe flows, the usual conditions of Reynolds-number
0 similarity enter through the wall shear stresses.
PoVo _ Po :
(7) T VLo =1 The ratios of "pressure/energy per unit volume'' must be the *
00 oPo same for both flows., This condition imposes a restriction on
the equation of state of the gases. (For two ideal gases, the
Y's must be identical.)
toHg
(8) Wi 1 The ratio of "heat added (or lost)/internal energy' must be
070 identical for the two flows during the observation intervals.

*Derived through the use of auxiliary condition M0 = pOVO'




SECTION II:
AUXILIARY EQUATIONS USED BY PUFL

The eight conditions given above are very general. They make no assumptions
about the auxiliary equations for mass flux, energy lost (or added), equatien of state,
wall shear stresses, or pipe geometry. The auxiliary equations used by the PUFL
calculation must now be examined in order to relate the derived similarity conditions to

more specific physical requirements.

Equation of state

First consider two ideal gases: p = (Y - 1)ep and p' = @' - 1e' o' .

Then,
® :B—: (’Y—l)ep =(’Y-1)
Po ot T -De'p @ - 1) €oPor
® Similarity condition (7) requires that po/eop0 = 1; hence, for the two flows to be
!

similar, it is required thatY =7 .

For calculational purposes, it is usually convenient to express the equation of ‘
state as a polynomial. The following example is used here to indicate that condition (7)
is really a little more general than the frequently stated similarity, condition which re-
quires that ¥, the ratio of the specific heats of the two gases, be constant and equal.

Suppose that

p=a1+a2p+a3e+a4ep+...

and that
a a a,e a,e
p':L:._1+ 2p+3 +4P+”
o Po Po Po Po

But similarity condition (7) requires that py = €40 = ep/e'p'. Hence,
a asp ase
- p' = 1 + 2 + 3 +a4e|p|+..”
€0 0 Po

and similarity can exist for gases with polynomial equations of state, providing that the
polynomial coefficients are related as shown above; namely,
a

s
a, = , Qg =—, 8, T—,a, =a,,.
17 ey’ 2 ey 73 4 %4

Note that ideal gases are a special case of the polynomial with a; "a, =ag = 0, and with

ay =7




Wall Shear Stress ‘

The frictional stress (TW) exerted by the wall is shown by SchlichtingS to be
proportional to pu2. The proportionality may be replaced by an equality, .
'I‘W = Cf (Re, €/D) pu2, by using the dimensionless coefficient of friction (Cf), which is
a function of the Reynolds number (Re) and the ratio of surface roughness to diameter
(¢/D). For flows at low Reynolds numbers, Cf is nearly independent of surface
roughness: Cf = Cf(Re). For turbulent flows at high Reynolds numbers, Cf is virtually
independent of the Reynolds number but depends strongly on the surface roughness:
Cf X~ Cf(e/D). Because ablation requires high-energy flows that are usually well into

the turbulent range, for such flows the ratio €/D is of prime importance.
_ 1 _ 2 . - .
If CfO = Cf/Cf, thenT = CfOPOUO’ and similarity condition (6) may be written
as

2
T woSoto _ €10P0Y050% _ Cr0Y0%0%0 _ Cr0%o50

= =1,
UOMO UOpOVO VO VO

Consider, for instance, two straight pipes. In this case, SO/VO = 1/RO. Then,
condition (6) requires that Cfo = RO/XO. Suppose that the axial distances scale by a
factor of 10 (X0 = 10), and the radial distances by a factor of 20 (R0 = 20). Then,
similarity requires that C,, = Cf/ C% = 20/10 and that C; = ZCI'M Thus, the friction
coefficient of the unprimed, or larger-radius, pipe must be twice as large as the primed,

or smaller-radius, pipe for the flows in these two pipes to be similar.

Ablation Equations

For dynamic gas flows, the turbulent convective heat flux may be written as
CHpuh, where CH is the dimensionless coefficient of heat transfer and h is the specific
total enthalpy.4 The rate that energy is lost by turbulent convection from the gas flow
to walls having a surface area S is then CHpuhS = -H.

Similarity condition (8) may be written as
toHg i f
eOMO C}_Ip'u‘ n's’ eOMO

CHpuhS t

o)
jast

PoUoS0t0

eOM0 : .

|

1=

1

H

h
. F .

@)

Using similarity conditions (5) and (7), it can be shown that h = e +p/p + u2/2 = h'eO.
. s _ . . . _ 1
Also, using condition (4) and M0 = pOVO’ and introducing the expression CHO = CH/CH,

similarity condition (8) may be written as




c. 0%
HO V0 )
The energy required to ablate a unit mass of wall material may be written as
EV + nh, where EV is the specific energy required to vaporize the wall material and n

is a turbulent-transpiration coefficient.4 The mass flux may then be written as

E _+nh
v

where heat is transferred to the wall by turbulent convection. When this expression

is used, similarity condition (1) is written as

° 1 [IET
Mos.ot_(l= . =<chuh> E.+n h> Soto _ .
M, E,+nh /\CLp'u'h’/ "M

For two pipes made of the same material, the assumptions EVO = EV/E; =1 and

ng = n/n' = 1 may not be too gross to make. Then, because h = h' from conditions
(5) and (7), and using condition (4), similarity condition (1) reduces to
S T
HO 'V,
with the auxiliary conditions that Evo =1 and ng = 1. Hence, conditions (8) and (1)

reduce to the same requirement.

For turbulent flows, Reynolds' analogy, which assumes that the same mechanism
causes the exchange of momentum as well as of heat, is frequently used.3 Reynolds!'
analogy may be expressed as CH = Cf/Z, and in this case as CHO = CfO‘ Hence, if
Reynolds' analogy is assumed to hold, similarity condition (6) becomes superfluous

providing that condition (1) is satisfied.

When one is trying to experimentally scale a flow during which ablated wall ma-
terial adds significantly to the original mass of the flow, similarity conditions (2) and
(3) become increasingly important. In discussing similarity condition (1) above, it was
found that the specific heats of ablation for the two flows had to be equal
(Ev + nh = El, + n' h'), which implies the same pipe material. Hence, ewo ~ 1
probably exists under most such conditions. Also, eno- 1 implies €y " 1, and condition
(5) then implies that U0 = 1. Thus, if significant mass addition occurs by natural
ablation of wall material during a flow, a scaled flow must have the same velocity and

specific internal energy (temperature) as the original flow.

If the added mass is not a significant fraction of the original mass during the flow
period, then conditions (2) and (3) lose importance. In this case, only the requirement
that Ug =eg is important, and the possibility exists of using both conditions at a lower

velocity and temperature flow as a scale model.
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A number of possibilities exist for specifying the kinetic and internal energies of
the ablated mass. The important requirement that the kinetic and internal energy
partition for the entering material be the same in both flows must hold; i. e.,

B = U\?V/ZeW and BO = 1. This requirement arises from similarity conditions (2), (3),
and (5).

A fairly general method presently used by PUFL to determine ey and UW is as

follows. The rate at which energy enters the flow is some fraction (o) of the rate at

which energy is being lost:
8)

s W

e+
w

a:_———
Ev+n

]

=

The fraction ¢ may be determined by additional equations or may be treated as a con-
stant for a first approximation. For o =1, there is no total energy loss. Using

EvO =ng © 1, h =h', and conditions (2) and (3), similarity requires ag = €yup which,
as discussed earlier, frequently is physically required to be unity.

For the auxiliary equations used by PUFL to simulate the ablation process, the

eight previously described general similarity conditions may now be restated:

Cr1nXnS ¢
qy -HLODO0 -y g =g, g =1
VO vO 0
(2) UwO B U0 or, with the PUFL equations, %0 = ®wo
it is sufficient that
() eyo ™ e Bo =1
X
0
(4) t, = —
0 U,
2 _
(5) Uy =€
C10%050
(6) — 7 = 1, If Reynolds' analogy holds, this is satisfied by condition (1).
0
(1) pgy = egpy- Same equation of state.
(8) Presents no new requirements if the requirements of conditions (1) are -

satisfied.
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SECTION III:
CALCULATIONAL VERIFICATION OF THE SIMILAR CONDITIONS

In order to test the previously derived conditions for similarity, some PUFL
problems are now considered. First, two finite, high-energy slugs of gases are
considered to be moving into lower-energy gases in two straight-walled pipes with
frictional effects, energy losses, and addition of mass. The initial conditions for an

unprimed and a primed flow are shown in Fig. 1.

r=10A7T Rigid
Unprimed flow ———pm . wall
(4
P=1.0><]0]0<:Iynes/cm2 r P=1.O><106dynes/cm‘.2 /
5=1.0x107" g/cm® , 5=1.0x1073 g/cm® [
vy=1.4 v =1.4
e=P/(Y-1)p=2.5><]0”ergs/g ‘ e=P/(y '1)p=2.5><109ergs/g
u=6.5% 102 cm/sec u=0cm/sec \
\ . \
Ocm 250 cm 1000 cm
Diaphragm
it =2 AT Rigid
Primed flow —— wall
bt =1.0% 107 2 / - % 2 /
=1.0x 10" dynes/cm P'=1.0x 10” dynes/cm
p'=].0><10_4g/cm3 I p‘=1.0><]0-69/cm3 l
y1=1.4 | |v=14 |
et= P'/(‘Y'-'l)p'=2.5><]()].l ergs/g\ e' =P/ (y"-1)p'=2.5% ]09 ergs/g \
o' =6.5% 10° cm/sec \ u' =0 cm/sec \
0 cm 25 cm 2" 100.cm

Fig. 1. Initial conditions for unprimed and primed flows.

From the initial conditioné, the following scale factors are obtained:
py = 1.0x10%, pg = 1.0x 10%, ey =1, Uy = 1, X, = 10, and R,
conditions (5) and (7) are satisfied. The two pipes are straight for their entire length,
hence S,/V, = 1/R(,. Condition (1) then requires that Cp; Xy/Rg =1 or that
CHO = RO/XO = 1/2, hence Cy = C'H/Z. For the two problems considered here,
Cpg = 0.002 and cﬁ = 0.004 have been picked. In addition, E_ = E} = 4.0 X 1019 and
n =n' = 0.1 have been chosen. It is assumed that one-half of the energy lost from the

flow is returned as ablated mass (o =o' = 0.5), and thatg =8 = 0.1 = U?V/Zew to

= 5. Hence, similarity
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satisfy conditions (2) and (3). Condition (4) is satisfied if the time is scaled by the
factor 10 = ty = XO/UO' Reynolds' analogy is assumed to hold (i. e., CHO = CfO)’ and
condition (6) is satisfied by Cf = ZCH = 0.004 and Ci', = ZCI'_I = 0.008.

The results of the PUFL calculations for these unprimed and primed flows are
shown at times of 0.8 msec and 0.08 msec in Figs. 2 and 3 respectively. These
figures show that the solutions are similar.

The next two problems deal with pipes having non-constant radii and convergihg
nozzles. The surface area and volume for the frustums of cones (i.e., cylindrical

nozzles) are
S =x(r, +1r,) /(Ax)2+(r —Jf')2
1 2 1 2

_ TAX 2 2
V = 3 (r1+r1r2+r2).

and

Hence, in order to maintain a constant ratio of SO/VO = l/RO for nozzle problems, the

axial length and radii must scale the same (i.e., X0 = RO)' i
Unprimed flow —=
T Diaphragm
r=100 A7 -- I‘r=]0/'\/—7?
Rigid
wall
250 cm
O cm
Primed flow (geometrically scaled by a factor of 2) —
Diaphragm
f = 50T - Lorosam

Rigid wall

5
0 cm 125 cm

Fig. 4. Initial conditions for unprimed and primed nozzle flows (flow parameters are
the same as those in Fig. 1).
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The two flows considered next are again finite, high-energy slugs of gases
moving into lower -energy gases, just as in the last problem. The geometry of the
unprimed and primed flows are shown in Fig. 4. This geometry imposes the scale
factors RO = X0 = 2. From the initial conditions, U0 = 1; hence, tO = XO/UO =2 =t/t'.
The pipe walls are-allowed to radially expand a distance equal to their original radius.
The expansion time is 5 X 10_4 sec for the unprimed flow and 2.5 X 10_4 sec for the primed
flow. Under these conditions, at any instant the surface-to-volume ratios of the ex-
panding nozzlt'as remain constant: SO/VO = l/R0 = 1/2. These problems use
Cf = 0.008, Cf = 0.008, CH
as the previous problems. Hence, the remaining conditions for similarity are satisfied.

= 0.004, C'H = 0.004, along with the same ablation conditions

The results of the PUFL calculations for these two flows are shown in Fig. 5 (p.16)
for the unprimed flow at a time of 0.6 msec and in Fig. 6 (p.17) for the primed flow at a time
of 0.3 msec. These results are shown right after the shock starts to reflect from the
rigid right-hand wall. The results are seen to be similar, indicating the validity of

the derived conditions.

SUMMARY

For turbulent flows, the familiar Reynolds-number requirement for similarity
may be reduced to requirements on surface roughness and surface-to-volume ratios.
For heat sources, similarity requires that during the scaled observation intervals,
the ratio of "heat added/internal energy" be identical. Similarity for mass sources re-
quires that the ratio of '"change in mass/ mass" be identical in two flows during the
scaled observation intervals. Also, variables describing entering mass must use the
same scale factors as the main-flow variables. For gas flows where ablation is not
important, equal Mach numbers are required for similarity. However, if significant
mass entrainment occurs during the observed time intervals of the two flows, and if
the entrained mass has identical properties when it enters the two flows, then
similarity requires that the two observed main flows have the same velocity and temper-
ature. Geometrically similar turbulent flows, in which heat transfer and friction ar‘el
related by Reynolds' analogy and in which equivalent assumptions are made about the

entering mass, are shown to readily satisfy the derived similarity conditions.
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APPENDIX A

The approach to similarity used in this report considers two arbitrary physical
flows, the primed and the unprimed. At some instant in time, the two flows are exam-
ined and ratios of all of the pertinent variables are obtained. The requirementsimposedon
these ratios are then determined. These requirements must be satisfied in order for the

differential conservation equations to be identical in both flows.

This approach differs slightly from the approach traditionally used. It has been
chosen, however, because of its slightly closer relationship to the frequently encountered
physical situation of having two experiments and asking, "What relationships must exist
between the parameters in the two experiments at this instant in order that one may
represent a scaled model of the other as time inéreases?'' It is shown in the following
discussion that the approach used in this report and the one traditionally encountered in

similarity analysis give equivalent results.

For the more traditional approach, dimensionless quantities are obtained from
the flow parameters by selecting certain suitable and characteristic magnitudes for the
flow being considered. For example, consider a pipe flow described by a set of un-
primed variables. A characteristic length of the flow (X ) is set edual to the radius,
and a reference time (t ) is frequently obtained from a reference velocity (U ) as

tp = Xp/Ug.
(VR) are also selected. A set of dimensionless varlables, denoted by asterlsks is then

A reference density (pR) mass flux (M ), surface area (S ), and volume

obtained from the physical flow variables and from the reference magnitudes:

s % % . e _
X = .}_(}i’ r = ;'-.f_., V = —VY_’ S* = §S._.’ m* = .El_’ t* = .{t—’ and p> = _pe—
R R R R mp R R

Derivatives in the dimensionless system are related to the derivatives for the flow

variables as follows:

I N > S S N
0X  ox* 9X Xp o gx*
and
D _ D D_1.0D
o; I Tl r
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The continuity equation for the flow variables is

Dp._p.dv, Sm
Dt © TV dat T Vv | .

Using the relationships defined above, the continuity equation becomes

£ £ ES E3 RIS
Dp PR P deV . S SRm mp
% T Tk % % .
tR Dt v VRtht v VR
Hence,
. sk sk v sk oo 3k
Do .o av*, Sr®R'R . s'm
% sk 3 P
Dt v ooat PRVR v

is the dimensionless form of the continuity equation for the flow.

Now consider another flow denoted by a set of primed variables. A dimensionless
set of variables are obtained from the primed flow variables by using a primed set of .
reference values. Following the same procedure as that used for the unprimed flow,

the dimensionless continuity equation for the primed flow is

t-.t 1
% 3 Pole o I
Dp'* . _p'* av'*, Sr™Rr'R s"m
sk LIS (3 T 1 T
Dt " A%

dt pRVR Vv

In order for the primed and unprimed flows to be dynamically similar, the primed
and unprimed dimensionless continuity equations must be identical. Hence, dynamic
similarity requires that

. U
SRR'R _ SR™R'R

PRV '
R'R VR

1
Pr
The reference values may be chosen arbitrarily, Hence, no loss of generality

results if the reference values are chosen so that all of the primed and unprimed

dimensionless variables are equal to unity. Then, for instance,

1
S*:S_S_zs'*:_ST_:l
R SR v
and
s . R ;
1 t
S SR

Hence, the ratio of the variables in the two flows can be expressed in terms of
the ratio of the reference values. This report gives the ratio of reference values as

1
SR/S;{ = SO = 8/S. Thus, the notation used in the report may be expressed as
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S v t p . m .
SO=_‘.'R_:S_', V0=__lB=_Y." t0=_15=£i’ p0=—ll1=% and]_\/_[z_._{':.{zgl_'.
SR S VR v tR t R p m

The previously derived condition for dynamic similarity of the continuity equation may

now be written as

or as

which is the same as that obtained in the report.

Generally, the traditional approach of determining whether two flows are similar
involves comparing groups of reference values like SRIthR/pRVR that are derived from
continuity. When all such groups (from the complete set of equations) are numerically
equal for two flows, the flows are called similar., The flows then behave in a similar

manner as time advances.

Although the reference values have dimensions, the referred-to groups of these
reference values are dimensionless. Their nondimensional character is due to the fact
that they are coefficients of terms in the dimensionless set of equations. For instance,
the Reynolds number that is frequently used in similarity work is just such a dimension-

less group obtained from certain forms of the momentum equation,

For the PUFL equations, it is not intuitively obvious what values should be chosen
for reference or as characteristic values for some variables (e.g., the mass flux).
Hence, it is legitimate to examine both flows at some instant and to ehoose the reference
values so that the dimensionless variables have, at that instant, a numerical value of
unity. Then the ratio of reference values becomes simply the ratio of flow variables.

This is the essence of what is done in this report.
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APPENDIX B

The momentum and energy equations given in this report are examined in the

following discussion, and conditions for similar solutions to the equations are derived.

Momentum

The momentum equation is

Du_1

: - ) -voR
Dt - m mS(uW u) VaX TWS.

Substituting for the primed variables gives

U ' V,V'p . T _aT! S.S'
“0.Du . _ 1 oo : fy 20" Po p' _ Twolw "0°
T D mris | MoS' SoUyoty - UgW) - mi X B m M
0 0 00 0
The energy equation in the primed system thus is
pu'_fo MoSoUwo m's' ' _ oM%Y m's' . fo YoPo v o
1 E [
t Ug M, m' W UpMy m' Uy XMy m' 8%
Q ! !
) EO_ T w050 'I’WS
» _'—" .
Uy M

(1) _._.__.._O 181 OU_L.N.Q =1

0

o oo
Mg

toVoPo  _

(3) TJBXOMO =

(4) toTw050 -
UpM,

Since condition (2) requires that MOSOtO/ M0 = 1, condition (1) imposes the
additional requirement that UWO/UO = 1.
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Energy

The energy equation is

(u-u )2
De: I.ilﬁ..- w +

: TSlui
Dt m 2 IIrlns(ew-e)_'R'_D—Y-I-W

m Dt m

Bl=

+

Substituting for the primed variables gives

V ! 1 2 Y ‘1 1
® . pe'_ MoSo srs' U0 %wUwo MomSS .o
tO Dt' M0 m' 2 m' M0 w w0 (0]
[ . ' 1 ol
PP Vo av', Twolw' So® |“lU L2 H
Mom tO dt’ m' ]\/_[0 0 m' Mo
The energy equation in the primed system thus is
. . sttt 1 !
De'=£Q__MOSOU2nE1' '.u'z_t_Q__MOSOU U mSuuw
1 [
Dt" e, My 0 m 2 o My “wo0°o0 m
v 12 v sttt
Jfo MoSo 2 m's' Bwo foMoS , S MMy
e M 0 ! 2 e, M w0 !
0 0 m 00 m
y R ! 1
%oMoS0% m's'e'  'PoVo p DV
eoMp m'  ¢Mgly m'Dt'

! \ 1 . b |
tTwoSoUo  TwS |u|  toHH

' .
eOMO m eOMOm'

The conditions for similar solutions imposed by the conservation of energy thus

are:
t M S U2
07 0"0"0

=1
eoMp

(1)

toMoS0YoUwo

M

(2) =1

€00
t M S.U2
0 _070"w0

eOM0

(3) =1

toMopSpewo

=1
€My

(4)
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t . M.S
0MoSg
(5) —_— =1
M,
-
paV
(6) eoMo -
oMo
3
toTwo50Y0
(7) e M - 1
oMo
toHy
(8) <M =1
oMo

Since condition (5) requires that MOSOtO = MO’ conditions (1) through (4) may be

simplified to:

(1) — =1
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